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Abstract 17 

Soil salinity is a grave environmental threat to agricultural development and food security in large parts of the world, 18 

especially in the situation of global warming and sea level rise. Reliable information on the adaptive capacity of 19 

farms plays a key role in reducing the socioeconomic effects of soil salinization and helps policymakers and farmers 20 

propose more appropriate measures to combat the phenomenon. The aim of the research is to design a theoretical 21 

framework to assess soil salinity and farmers’ adaptive capacity, based on machine learning, optimization 22 

algorithms (namely Xgboost (XGB), XGB- Pelican Optimization Algorithm (POA), XGB- Siberian Tiger 23 

Optimization (STO), XGB- Serval Optimization Algorithm (SOA), XGB- Particle Swarm Optimization (PSO), and 24 

XGB- Grasshopper Optimization Algorithm (GOA)), remote sensing, and interviews with local people. The 25 

geographical distribution of soil salinity was evaluated by applying machine learning Sentinel 1 and 2A. The 26 

adaptive capacity of farmers was evaluated through interviews with 87 households. The statistical indices, namely 27 

the mean absolute error (MAE), the root mean square error (RMSE), and the correlation coefficient (R²) were used 28 

to assess the machine learning models. The outcome of this study demonstrated that all optimization algorithms 29 
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were successful in improving the accuracy of the XGB model. The XGB-POA was the most performance, with an 30 

R
2
 value of 0.968, followed by XGB-STO (R²=0.967), XGB-SOA (R²=0.966), XGB-PSO (R

2
 = 0.964), and XGB-31 

GOA (R²=0.964), respectively. The soil salinity map produced by the proposed models also indicated that the 32 

coastal and riverside regions were the most affected by soil salinity. The results also showed human and financial 33 

resources to be the two most important factors influencing the adaptive capacity of farmers. This study offers a key 34 

theoretical framework that supplements the previous studies and can support policy-markers and farmers in land 35 

resource management, for example accurately identifying areas affected by soil salinity for agricultural development 36 

in the context of climate change. In addition, this research highlights the importance of integrating machine learning, 37 

remote sensing, and socio-economic surveys in soil salinity management, which can support farmers for sustainable 38 

agricultural development. 39 

Keywords: Red river, soil salinity, machine learning, adaptive capacity 40 

1. Introduction 41 

Soil salinity is among the greatest threats to land management poses significant problems to agricultural progress 42 

and global food security (Jia et al., 2024; He et al., 2024; Xiao et al., 2024). According to FAO, about 424 million 43 

hectares of land surface (with a depth of 0-30 cm) and more than 833 million hectares of subsoil (30-100 cm) are 44 

touched by soil salinity. This area is increasing by about 2 million hectares each year and influences more than 100 45 

countries worldwide, causing damage between 12 and 27.3 billion USD (Jia et al., 2024; Aksoy et al., 2024).  46 

The soil salinity problem will occur at the local, regional, and global levels (Liu et al., 2024; Bandak et al., 2024). In 47 

Vietnam, many littoral regions affected by soil salinity problems. According to the 2021 Ministry of Agriculture and 48 

Rural Development Report on the Current Situation and Planning of Agricultural Development, in 2020, about 49 

200,000 hectares of cropland in Vietnam were touched by soil salinity. The Red River and Mekong Deltas are home 50 

to more than 40 million people and represent an extremely key role in the country's agricultural and aquaculture 51 

activities. They account for 71% of paddy cultivation, 86% of aquatic farming, and 65% of fruit production (General 52 

Statistics Office, 2024; Ministry of Aquaculture, Agriculture and Rural Development, 2013). These low-lying 53 

coastal areas (Hung and Larson, 2014) are experiencing subsidence (Le Dang et al., 2014), and river water levels are 54 

decreasing. As such, they are very susceptible to the effects of climate variability (Dasgupta et al., 2009). Soil 55 

salinization in the littoral regions of these two deltas - partly due to the advance of the sea - is becoming a major 56 
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threat to crop production while also putting pressure on Vietnam’s food abundance. Therefore, monitoring soil 57 

salinity is essential to inform agricultural management strategies to ensure food security at local and regional levels. 58 

In order to address the problem, it is important to have the most precise and current data on soil salinity. 59 

Traditionally, the most accurate data would be obtained by measuring soil salinity directly in the field (Rhoades and 60 

Ingvalson, 1971; Eldeiry et al., 2008). This method collects point samples in the areas of interest one by one, which 61 

is time-consuming and requires significant manual work. Although this method can accurately identify soil salinity, 62 

there is no way for these data to be updated over time without conducting further field missions. To obtain a 63 

continuous math function, i.e., raster data suitable for GIS analysis and remote sensing for the areas of interest, 64 

freely accessible remote sensing data, such as those obtained via Landsat and Sentinel imagery, can monitor the 65 

environment with different spectral bands, at high spatial (10 m) and temporal (3 to 5 days) resolutions (Asfaw et 66 

al., 2018; Cullu, 2003).  67 

Remote sensing data has been justified by several studies by the ability to monitor soil salinity with high accuracy 68 

and faster. This process can be achieved by analyzing the relationships between remote sensing data and in situ data, 69 

provided these data are spatially and temporally consistent. To emphasize the qualities of the land surface, for 70 

example, water, vegetation, or saline soil, several studies have highlighted indices such as NDVI, VSSI, and NDSI 71 

to monitor soil salinity. Using an index with different wavebands increases the number of variables in the soil 72 

salinity modelling process. Although remote sensing can monitor soil salinity using different spectral responses, 73 

slightly or moderately saline soils cannot be distinguished easily because soil minerals and their components modify 74 

the spectral capacity of the soil surface.  75 

In recent years, with improvements in computing power, machine learning, and deep learning have greatly provided 76 

the growth of techniques to construct soil salinity maps with higher accuracy. Algorithms such as random forest 77 

(Fathizad et al., 2020), XGBoost (Jia et al., 2024), support vector machines (Jiang et al., 2019), CatBoost (Gong et 78 

al., 2023; Wang et al., 2022), and AdaBoost (Wang et al., 2022) are the most popular algorithms to construct soil 79 

salinity maps by integrating satellite images and in situ measurements. Some research has used deep learning models 80 

to construct soil salinity maps, such as deep neural networks, recurrent neural networks, and Deep Boltzmann 81 

machines.  82 
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(Kaplan et al., 2023) used four machine learning algorithms, namely M5P, RF, Linear, and IBK, integrated with 83 

Sentinel 2A data and 393 soil samples collected in situ to construct a soil salinity map for the United Arab Emirates. 84 

The study's outcome showed that allmodels' accuracy was well in assessing soil salinity, with the IBK model 85 

proving the most effective. (Aksoy et al., 2024) used XGBoost and random forest with 26 environmental covariates 86 

from Landsat 8 OLI to evaluate soil salinity in Iran’s Lake Urmia. The study's outcome showed that machine 87 

learning integrated with Landsat 8 OLI data successfully monitored soil salinity, with XGB yielding more accurate 88 

results than random forest. (Jia et al., 2024) applied nine models, namely PLSR, Lasso, CART, RF, ERT, GBDT, 89 

LightGBM, XGBoost, and AdaBoost, integrated with Sentinel 2A imagery, to evaluate soil salinity in the Ningxia 90 

Yellow River Diversion Irrigation Area. The results showed that the AdaBoost model performed better than the 91 

others. 92 

Previous studies show that although machine learning methods have been utilized to assess soil salinity in many 93 

regions of the world, their application for this purpose is still limited in the Mekong and Red River Deltas 94 

(Vermeulen and Van Niekerk, 2017; Shi et al., 2021). Currently, there are only four studies that have assessed soil 95 

salinity in the Mekong Delta (Hoa et al., 2019; Nguyen et al., 2021; Nguyen et al., 2023; Nguyen et al., 2018), and 96 

no work has been done in this field for the Red River Delta. In addition, most previous studies have developed state-97 

of-the-art methods, such as integrating machine learning and remote sensing, to identify the geographical 98 

distribution of soil salinity in different regions of the world (Hardie and Doyle, 2012; Wang et al., 2007; Su et al., 99 

2020). Few studies have integrated the identification of the geographical distribution of soil salinity with the 100 

adaptive capacity of farms. Several studies have, however, highlighted the importance of measuring such adaptive 101 

capacity to improve the resilience of farms against soil salinization in particular and natural hazards in general. 102 

(Hoang et al., 2023) reported that assessing the ability of farms to adapt to soil salinization is the key to reducing 103 

vulnerability and contributes significantly to the development of sustainable livelihoods.  104 

The adaptive capacity is defined as the capability of the community to cope, adjust, and adapt to the impacts of 105 

growing soil salinity. It measures the ability to predict, respond, and recover from the phenomenon. It is assessed on 106 

different scales, using different approaches, according to the region in question (Mazumder and Kabir, 2022; Thiam 107 

et al., 2024). The IPCC in 2014 indicated that farm adaptive capacity depends on five main factors: natural capital, 108 

human capital, material resources, financial resources, and social capital.  109 
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The research aims to improve a theoretical framework to assess soil salinity and farmers’ adaptive capacity based on 110 

machine learning, optimization algorithms (namely XGB, XGB- POA, XGB- STO, XGB- SOA, XGB- PSO, and 111 

XGB- GOA), remote sensing, and interviews with local people. This study used machine learning to construct the 112 

soil salinity map. From the literature reviews, several studies have been conducted in different regions of the world, 113 

focusing on the adaptive ability of farmers (Bhuyan et al., 2024; Thiam et al., 2024). However, no studies 114 

comprehensively analyze farmers' adaptive ability to combat soil salinity in a given region based on machine 115 

learning, remote sensing, and interviews with local people. In addition, several studies combine machine learning 116 

with Sentinel 1 or Sentinel 2 to assess soil salinity (Wang et al., 2021; Xiao et al., 2023); however, there are rarely 117 

studies that combine machine learning with Sentinel 1 and Sentinel 2 to monitor soil salinity in the Red River Delta. 118 

Several studies have pointed out that the combination of Sentinel 1 and Sentinel 2 can reduce the limitations of each 119 

image, which can improve the accuracy of soil salinity monitoring in the context of climate change (Ma et al., 2021). 120 

This map gives us a panoramic picture of the saline intrusion situation in the Thai Thuy district in particular and the 121 

Red River Delta region in general. This map will be the basis for identifying areas affected by saline intrusion, 122 

thereby assessing people's adaptability to this situation. The results of this study can inform farmers of developing 123 

strategies to reduce the impacts of soil salinity on agriculture and ensure food security in the region. To our 124 

knowledge, this study is considered the first study to assess the soil salinity and farmer’s adaptive capacity of the 125 

population based on machine learning, remote sensing and interviews with the local people. The finding of this 126 

paper provides important information for policymakers or local authorities based on evidence and, ultimately, 127 

supports researchers or decision makers in developing effective strategies for smallholder farmers. 128 

2.  Study Area 129 

The Red River Basin covers a total area of 169,000 km² and spans China (48%), Laos (0.7%), and Vietnam (51.3%). 130 

The river system has a total length of 1,150 km, with around 500 km in the territory of Vietnam before discharging 131 

into the Gulf of Tonkin. The topography is mainly mountainous terrain that comprises about 70% of the total area at 132 

elevations above 500 meters. In the lowlands, elevations range from approximately 0.4 to 9 m, with the 133 

characterized by tropical climate with summer monsoons from the south and winter monsoons from the northeast 134 

(Vinh et al., 2014), the basin experiences average annual precipitation ranging from 800 to 3000 mm. The rainy 135 

season occurs from May to October and registers for 70%-90% of annual rainfall (Quang et al., 2024). Daily rainfall 136 
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varies from 300-400 mm during this period. The average temperature ranges from 22 to 27 °C, with winter 137 

temperatures potentially below 10 °C and summer temperatures above to 40 °C. 138 

The basin flows into the Gulf of Tonkin through nine river mouths, of which the Tra Ly, Van Uc, and Ba Lat are the 139 

main channels for water conveyance. These channels transport a substantial sediment load of approximately 140 

120×10
6
 tons annually to the Red River Delta region (Vinh et al., 2014). The littoral region has a semi-diurnal tidal 141 

regime, with tidal ranges ranging from 2 to 4 m. Saline intrusion significantly influences the littoral region during 142 

the dry season with average and maximum wave heights of about 0.7-1.3 m and 3.5-4.5 m, respectively. However, 143 

during major storms, wave heights can obtained at 5 m (Nhuan et al., 2007).  144 

The Red River Delta is influenced by several natural hazards, such as flooding, soil salinity, and sea level rise 145 

(Castelletti et al., 2012).  Several studies have highlighted that rising sea levels are having an increasingly severe 146 

impact on inland regions, leading to soil salinity (Nguyễn Văn Đào, 2023). In recent years, the Red River Delta in 147 

general and the Thai Thuy district in particular have been affected by soil salinity, causing significant damage to 148 

agricultural development and negatively impacting residents' livelihoods (Figure 1). 149 
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 150 

Figure 1: Geographical location of study area 151 

3. Methodology 152 

The first strand of the methodology was the identification of the soil salinity mapping. This process was divided into 153 

four main steps (Figure 2): 154 

Preparation of soil salinity samples and factors  155 

 The data for constructing the soil salinity map were divided into two main types: EC and conditioning factors. 156 

EC Measurements 157 

Soil salinity samples were collected using soil drills using both zigzag and grid techniques. This technique is utilized 158 

frequently in small-scale sampling (Jia et al., 2024; Elshewy et al., 2024). The sampling depth depends on the soil 159 
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salinity assessment for each specific crop. This study monitors soil salinity with the objective of agricultural 160 

development; therefore, soil samples were obtained from a profoundness of 0 to 30 cm. The sampling process 161 

occurred in the dry season, between March and April 2024. In addition, when sampling in the field, it is necessary to 162 

consider the homogeneity of the soil. 62 samples were collected to ensure coverage of the entire field. Samples were 163 

collected along the road to get the different types of soil, and the farmers indicated samples. The samples were 164 

locked in bags until analysis in the laboratory. The information on the positions of the samples, such as longitude 165 

and latitude, was noted in the sampling process. It should be noted that when the samples were transferred to 166 

laboratories, they were stored in enameled jars, and the impurities present in the samples, such as stones, wood, and 167 

branches, were removed. These soil samples were then finely ground. The electrical conductivity (EC) was then 168 

calculated from a 1:5 soil/deionised water suspension. A soil/water suspension was created by adding 7 g of soil to 169 

35 ml of distilled water and then mixed with a mechanical stirrer for 60 minutes to dissolve the salt. The EC value 170 

was measured using a conductivity probe. Finally, the samples were split into two parts: the first part (70%) was 171 

used to build the proposed models, while the other part (30%) was applied to confirm the model. 172 

Remote Sensing Data 173 

Due to the effects of the earth's cycle, the salt accumulated in the soil is closely linked to climatic conditions, 174 

hydrology, soil characteristics, and surface vegetation density, for example, topographic characteristics (Wang et al., 175 

2024; Xie et al.). These factors were calculated using the optical Sentinel 2A images and microwave Sentinel 1 176 

images to identify the soil salinity value. The Sentinel-2A images were calculated by running Sen2Cor for 177 

atmospheric correction to ensure the transition between apparent atmospheric reflectance and surface reflectance, 178 

and these images were obtained using Google Earth Engine. To reduce the influence of clouds, Sentinel 2A images 179 

for March-April 2024 were selected with a cloud cover rate of less than 10%. To enhance the quality of these 180 

images, the median value of each pixel was calculated at a resolution of 10 m. As for the Sentinel 1 images, they 181 

were acquired in dual cross-polarization mode and broadband interferometric mode. The median value of the 182 

Sentinel 1 image obtained on March 31, 2024, was computed to acquire microwave remote sensing data at a scale of 183 

10 m. As well as 12 bands of the Sentinel 2A image (from band 1 to band 12) and 3 indices of the Sentinel 1 image 184 

(VV, VH, and VVVH). In addition,20 spectral indices extractés à partir de l’image Sentinel 2A were selected to 185 

build the soil salinity model, namely Brightness index (BI), Canopy Response Salinity Index (CRSI), Enhanced 186 
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Vegetation Index (EVI), Intensity index 1 (Int1), Indensity index 2 (Int2), Normalized Difference Salinity Index 187 

(NDSI), Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), Salinity index  (S1), 188 

Salinity index  (S2), Salinity index  (S3), Salinity index  (S5), Salinity index (S6), Soil Adjusted Vegetation Index 189 

(SAVI), Salinity Index 1 (SI), Salinity index 2 (SI1), Salinity index 3 (SI2), Salinity index 4 (SI3) and Salinity index 190 

5 (SI4). These factors were divided into three main groups: vegetation indices (NDVI, CRSI, RVI, SAVI, and EVI), 191 

water indices (flow direction and distance to river), salinity indices (SI, SI1, SI2, SI3, SI4, S1, S2, S3, S5, S6, and 192 

NDSI), topography indices (elevation and slope), and chlorophyll spectral indices (BI, Int1, Int2). These indices 193 

have been used frequently in previous studies (Nguyen et al., 2021; Wang et al., 2021; Hoa et al., 2019). 194 

The indices due to the vegetation reflect the health and growth of vegetation, and This indirectly reflects the level of 195 

soil salinity in any region. The increase in soil salinity has a negative effect on the development of vegetation due to 196 

the difference in the absorption of water and nutrients; therefore, it leads to a decrease in the values of NDVI, RVI, 197 

SAVI, and EVI and an increase in the value of CRSI(Jia et al., 2024; Wang et al., 2024). Water indices play an 198 

important role because regions near rivers or along the flow path are more affected by the salinity risk. River flow is 199 

often affected by tides or seawater intrusion; therefore, when the distance to the river decreases, the salinity risk 200 

increases due to the infiltration of salty river water into the soil. Furthermore, the flow direction influences the 201 

propagation and infiltration of water in the soil. Salty water can penetrate further inland if the flow is from the sea to 202 

the river, especially in the dry season (Nguyen et al., 2021). 203 

Topography indices are key in constructing soil salinity models, as salty water penetrates low-lying regions more 204 

easily. In the Red River Delta, the low-lying regions are located along the coastline, and as such, these regions are 205 

more affected by the risk of soil salinity. Salinity indices highlight the value of spectral reflectance in regions 206 

affected by saltwater intrusion. The higher the salinity, the higher the spectral reflectance value (Du et al., 2024).  207 

Construction of hybrid machine learning models 208 

Six machine-learning models were built to identify the spatial distribution of soil salinity. This involved two main 209 

steps: constructing an individual XGB model and then creating hybrid models by integrating each of five 210 

optimization algorithms with the XGB model. The XGB model was developed using Python and the Sklearn library. 211 

Its accuracy depended on parameter adjustments made using the trial-and-error method. 212 
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Evaluation of model accuracy 213 

The statistical indices, the root mean square error (RMSE), the mean absolute error (MAE), and the correlation 214 

coefficient (r) were used to assess the accuracy of the proposed models. 215 

Analysis of spatial distribution and interview area identification 216 

After validating the models, they were utilized to assess soil salinity in the study area at a pixel scale with a 217 

resolution of 10x10 m. Approximately 30 million pixels were assessed, and a soil salinity map was constructed 218 

using the Point to Raster tool in ArcGIS 10.8. 219 

The second strand of our methodology, interviews with populations, was used to assess the adaptive capacity of 220 

farms in the study area. A Tân commune was selected for this assessment. A total of 87 households were 221 

interviewed. These households were randomly selected from A Tan commune in the Thai Thuy district to participate 222 

in structured interviews. The commune is located in the coastal region, which has the lowest altitude and is, often 223 

affected by soil salinity. Residents mainly worked in rice and fish farming. All 87 responses were used to analyze 224 

farmers’ adaptive capacity to soil salinity. 225 

The structured interviews focused on five main elements: natural resources, human resources, physical resources, 226 

financial resources, and social resources. There was a particular focus on soil salinity in 2023. 227 

 228 

 229 
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 230 

Figure 2: Methodology used for the farmer's adaptive capacity and soil salinity in this study 231 

3.1. XGBoost (XGB) 232 

XGB is a popular gradient-boosted tree algorithm that can solve classification and regression problems. The main 233 

idea of learning with XGBoost is to train several models sequentially and combine them successively by correcting 234 

errors iteration after iteration to obtain the most potent ensemble model possible (Zhang et al., 2022). The result of 235 

the prediction is, therefore, made up of the prediction of the set of chained decision trees. This method increases the 236 

performance and stability of the model while minimizing its variance (Zhang et al., 2022). The XGB model 237 

functions in three main steps: i) it constructs an individual model (tree) by taking predictions on the training data, ii) 238 

it computes the mistakes of these predictions for the real values, and iii) it constructs another tree to predict and 239 

correct these mistakes. The process is repeated, and each new tree is built to correct the mistakes of the previous 240 

one. This is called "boosting". The predictions of all trees are then summed to take the final predictions 241 

(Mukhamediev et al., 2023). 242 

To optimize the accuracy of the XGB model, three main parameters need to be adjusted: learning rate (reducing the 243 

value of this parameter can avoid the overfitting problem), alpha, and lambda (increasing the value of these 244 
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parameters makes the model more conservative), and column sample by tree (adjusting this parameter has the 245 

objective of obtaining the subsample of columns; (Tan et al., 2023). 246 

3.2. Pelican Optimization Algorithm (POA) 247 

Agents searching for prey in nature have a mechanism similar to that of agents searching for optimal solutions. 248 

Therefore, based on this perspective, the search agents that comprise a population seek to achieve the optimal 249 

solution more quickly. Each agent is an optimal solution whose position is determined in the search space. From a 250 

mathematical perspective, agents are vectors, and the population of agents forms matrices (Dehghani and Trojovský, 251 

2022). Among the values used to calculate the aim function, the top value of the agents is determined as the top 252 

solution of the agents. 253 

One such optimization algorithm is POA proposed by (Trojovský and Dehghani, 2022).  This algorithm is designed 254 

based on Pelicans' foraging and communication processes. This is a large bird with a long beak and a large pouch in 255 

the throat to hold prey during hunting. Hundreds of individuals may flock together. They can weigh up to 15 kg, 256 

grow to a height of 1.8 m, and have a wingspan of up to 3 m. These characteristics greatly assist them in finding 257 

food, such as fish, frogs, and turtles. 258 

POA is based on the simulation of the comportment and plan of pelicans when attacking prey. Pelican hunting 259 

strategies are divided into two stages. First the bird moves towards its prey, then it spreads its wings and glides 260 

along the water surface to attack. In the first stage, the pelicans determine the situation of the prey and move toward 261 

the identified prey area. Identifying prey areas represents the determination of the search space in the POA model. 262 

The positions of the prey are randomly produced in the search space, which increases the exploration power of POA 263 

in the process of searching and solving optimization problems. After locating the prey area in the second stage, 264 

pelicans spread their wings and move on the water surface to attack the prey and store it in their throat pouch. This 265 

strategy allows them to capture more prey. Modelling this behavior of pelicans makes the POA model easier to 266 

converge and improves local search ability (Trojovský and Dehghani, 2022; Alamir et al., 2023). 267 

3.3. Serval Optimization Algorithm (SOA) 268 

SOA is one of the population-based optimization algorithms, and they exploit the searching power of agents in a 269 

population. This makes this algorithm powerful in solving optimization problems (Dehghani and Trojovský, 2022). 270 
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In SOA, the agents' situation are continuously determined and up-to-date in each iteration. The updating process 271 

simulates the behavior of serval cats in the wild, divided into two stages: i) exploration of the search space and ii) 272 

local exploitation in the search space (Sindi et al., 2024). 273 

Wild cats are some of the most efficient predators, using hearing to identify and attack prey. In the first stage of 274 

SOA, the situation of the servals is repeatedly up-to-date after each move: the continuous updating of positions 275 

guides to detailed coverage of the search space. The aim of this stage is to raise the power to search and explore in 276 

the search space. The situation of the best member in the SOA is considered the situation of the prey and, therefore, 277 

the optimal solution (Sindi et al., 2024; Dehghani and Trojovský, 2022). 278 

When attacking prey, wild cats jump during the chase to prevent the prey from escaping. In SOA, these strategies 279 

are also used to update the position of the SOA population. The simulation of the chase process can cause small 280 

changes in agents' positions in the SOA. However, this phase aims to increase the search space mining capability of 281 

SOA, which helps to improve the local search capability in the search space (Dehghani and Trojovský, 2022). 282 

3.4. Siberian Tiger Optimization (STO) 283 

The STO algorithm is a new biologically inspired hyper-heuristic algorithm modeled after Siberian tigers' hunting 284 

behavior (Trojovský et al., 2022). STO replicates the Siberian tiger tracking and capture strategy, using a 285 

population-based approach to explore the search space efficiently and quickly (Trojovský et al., 2022). 286 

STO works by simulating the way Siberian tigers move and communicate with each other while hunting their prey. 287 

Each agent in the STO algorithm represents a Siberian tiger, each exploring a different region in the search space. 288 

The tigers communicate and share information about their locations with each other to find the optimal location. The 289 

location update process of Siberian tigers in STO is carried out in two main phases: the hunting and bear-fighting 290 

phases (Trojovský et al., 2022). 291 

In the hunting phase, since the Siberian tiger is a powerful predator, it hunts by assaulting different prey, so the 292 

agents in the STO are up-to-date based on the simulation of this hunting strategy. After choosing the prey, the 293 

Siberian tiger will chase, attack, and kill its prey in this phase. The members' positions of the population are 294 

continuously updated on the choice and attack of the prey. This phase causes sudden changes in the members' 295 

positions and increases the search ability in the search space (Al-Sarray et al., 2024). 296 
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During hunting, the Siberian tiger has to fight with brown and black bears. Therefore, in the second phase, the 297 

members of the STO are up-to-date on the policy of the Siberian tiger when fighting with bears. When fighting with 298 

bears, the Siberian tiger ambushes and then assaults the bear until it kills it (Al-Sarray et al., 2024; Trojovský et al., 299 

2022). 300 

One of the key features of STO is its ability to balance exploration and exploitation. In other words, the STO 301 

algorithm is designed to explore the search space extensively and refine promising solutions in the most promising 302 

areas. Thus, STO avoids local optimization problems and increases the likelihood of global optimization (Trojovský 303 

et al., 2022). 304 

3.5. Particle Swarm Optimization (PSO) 305 

PSO was proposed by (Kennedy and Eberhart, 1995). It is founded on the principles of self-organization that allow 306 

one or more groups of living organisms to move together in a complex way (Fu et al., 2018). PSO simulates the 307 

movement process of some animals, such as flocks of birds. In this model, birds move randomly by following three 308 

rules: i) they track the same path as their friends, ii) they are enticed to the average situation of the group, and iii) 309 

they maintain a certain space between each other to avoid collisions (Ruidas et al., 2022). 310 

PSO explores the search space through the birds' position and flight paths. The position of each bird in the search 311 

space is considered a potential solution. More precisely, the position and speed of the birds are represented by 312 

vectors with D dimensions, and the initial speed is determined randomly. In the PSO algorithm, the position and 313 

velocity of each bird are updated continuously after each iteration until an optimal solution is reached. The 314 

optimization function is used to evaluate the quality of the position and velocity(Bui et al., 2016). In this study, PSO 315 

was used to optimize the XGB model. 316 

3.6. Grasshopper Optimization Algorithm (GOA)GOA was first proposed by (Mirjalili et al., 2018). This 317 

algorithm is based on the swarm behavior of locusts during foraging to solve optimization problems. Grasshoppers 318 

move quickly to explore spaces, and then they move locally to exploit resources in the foraging space. GOA models 319 

the behavior of a virtual swarm of grasshoppers, where each position represents an optimization solution to the 320 

problem (Moayedi et al., 2021; Nguyen, 2022). Movement is influenced by several factors: social interaction, 321 

gravity, and wind advection. Social interaction plays an important role in finding the optimal position because 322 
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grasshoppers interact with each other to exchange information about precise positions. This social communication 323 

allows grasshoppers to find the right solutions. Then, gravity allows grasshoppers to explore the foraging spaces in a 324 

balanced manner, hence avoiding the local optimization problem (Ingle and Jatoth, 2024). Finally, wind advection 325 

represents the external effects that can influence the movement of grasshoppers, leading them to some areas of the 326 

search space. In the optimization process, an equilibrium between exploration and exploimportants to accurately 327 

approach the true global optimum (Moayedi et al., 2020).  328 

4. Results 329 

4.1. Soil Salinity Predictors 330 

The choice of suitable factors plays a key role when using machine learning to determine the geographical 331 

distribution of soil salinity in any region. Conditioning factors represent the causes of soil salinity, so improper 332 

selection of these factors can result in inaccurate prediction. Data redundancy may make the model more complex 333 

and lead to poor performance.  334 

RF was utilized to measure the suitable factors in this study. It assigns a value to each factor based on the relation 335 

within soil salinity samples and conditioning factors. The most important factor is the one with the greatest 336 

importance in determining soil salinity zones. In addition, after using RF to determine the importance of factors, we 337 

used trial and error to continue eliminating factors that affected the precision of the model.  338 

The outcome showed that six factors (DEM, RVI, B2, S6, S2, and S1) had an RF value of zero, so these factors did 339 

not affect the determination of the spatial distribution of saline areas. In addition, two factors (NDVI and flow 340 

accumulation) were eliminated using the trial-and-error method. The other 30 factors were used to build the model. 341 

VVVH (0.39), VV (0.3), distance from the river (0.28), CRSI (0.24), and EVI (0.21) had a strong influence on the 342 

soil salinity in the study area. S3 (0.17), BI (0.17), B12 (0.15), SI2 (0.14), B7 (0.11), VH (0.1), and Int2 (0.1) have 343 

moderate relationships with the soil salinity. B11 (0.08), S5 (0.06), slope (0.06), SI (0.06), SAVI (0.06), NDSI 344 

(0.06), SI4 0.05), B5 (0.05), Int1 (0.05), B9 (0.05), B4 (0.05), SI (0.04), SI1 (0.04), B8 (0.04), B3 (0.02), B1 (0.02) , 345 

and B6 (0.02) had only a weak relationship on soil salinity (Figure 3). 346 
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 347 

Figure 3: Variables important for soil salinity model using RF. 348 
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4.2. Model Accuracy Validation 351 

R² was used to assess the performance of the machine learning models. The outcome of this study demonstrated that 352 

all optimization algorithms enhanced the performance of the XGB model. The XGB-POA model was the greatest, 353 

with an R
2
 value of 0.968, followed by XGB-STO (R²=0.967), XGB-SOA (R²=0.966), XGB-PSO (R2 = 0.964), and 354 

XGB-GOA (R²=0.964; Figure 4). 355 
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Figure 4: R² value for the testing dataset 356 

The RMSE and MAE were also used to evaluate the accuracy of the machine learning models. The XGB-POA 357 

model performed better on training and validation data (RMSE=0.28, MAE=0.18 for learning data and RMSE=0.31 358 

and MAE=0.242 for verification data). The XGB-STO was ranked second with an RMSE value of 0.3 and MAE of 359 

0.22 for learning data, and an RMSE value of 0.32 and MAE of 0.244 for verification data. The XGB-SOA model 360 

was ranked third, with RMSE=0.31 and MAE=0.23 for learning data and RMSE=0.33 and MAE=0.25 for 361 

verification data. XGB-GOA model came fourth, with RMSE=0.33 and MAE=0.25 for learning data and 362 

RMSE=0.34 and MAE=0.26 for verification data. The XGB-PSO model performed less well than the other models, 363 

with RMSE=0.335 and MAE=0.26 for learning data and RMSE=0.341 and MAE=0.27 for verification data (Table 364 

1). 365 

Table 1. Model performance and comparison. 366 

Models Training dataset Validation dataset 

RMSE MAE R² RMSE MAE R² 

XGB-POA 0.28 0.18 0.99 0.31 0.242 0.968 

XGB-STO 0.3 0.22 0.987 0.32 0.244 0.967 

XGB-SOA 0.31 0.23 0.98 0.33 0.25 0.965 

XGB-GOA 0.33 0.25 0.97 0.34 0.26 0.964 

XGB-PSO 0.335 0.26 0.97 0.341 0.27 0.964 

XGB 0.35 0.32 0.91 0.37 0.34 0.9 
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 367 

4.3. Spatial distribution of soil salinity in the Thai Thuy district of the Red River Delta 368 

After validation, the proposed models were used to construct a geographical distribution map of soil salinity. The 369 

process was done by assigning conditioning factors to the 30 million pixels for the entire study area. It can be seen 370 

that the EC value varies from 0.29 to 7.7 mS/cm, depending on each model. On the map, the color varies from green 371 

to red, representing different EC values. The areas with green color are located far from the continent (EC=0.29), 372 

while the areas with red color are located on the coast, with EC value superior 7.7 mS/cm. This shows that these 373 

areas are directly affected by saltwater intrusion from the sea (Figure 5). 374 
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Figure 5: Soil salinity mapping 375 

4.4. Farmers’ Adaptive Capacity Assessment 376 

Soil salinity is a key challenge for deltas worldwide,  particularly in deltas where population density is high and 377 

socio-economic conditions are poor (Hoque et al., 2016). The Red River Delta is the most densely populated area in 378 
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Vietnam and one of the most densely populated deltas in Southeast Asia; therefore it is key to consider the impact of 379 

soil salinity in this delta on the farmer’s life and their adaptive capacity. Spatial distribution maps of soil salinity 380 

show that this phenomenon occurs in many areas of the Thai Thuy district, especially in coastal areas. This certainly 381 

significantly impacts people's living and production areas and poses challenges to their livelihoods. In this section, 382 

we address the adaptive capacity of farmers in A Tan commune, a coastal area, through five elements: natural 383 

resources, human resources, physical resources, financial resources, and social resources. To analyze the 384 

community's ability to adapt to saline intrusion, 87 households in the A Tan commune were interviewed. 385 

4.4.1. Natural Resources  386 

Due to the process of salinity, we are facing a major threat to agriculture and sustaining arable land. Excess salinity 387 

adversely influences soil structure and fertility, plant growth, crop yield, and microorganisms (Tarolli et al., 2024). 388 

Soil salinity is frequently associated with water salinity. Groundwater in littoral regions of the Red River Delta is 389 

characterized by high salinity (Hoque et al., 2016). The scarcity of freshwater poses significant challenges for crop 390 

irrigation. Irrigating with saline water exacerbates soil salinity. In addition, soil salinity also creates a scarcity of 391 

grazing land and fodder cropland of coastal areas. Coastal livestock is harshly suffering from food inaccessibility 392 

and poultry farming in the coastal districts. All the mentioned factors impose considerable risks to the coastal 393 

inhabitant’s livelihood and food security, who rely mainly on agricultural activities such as growing rice and crops 394 

such as onions, garlic, watermelon, and tobacco, according to our interviews. 395 

 Indeed, the results showed that 59% of interviewed households said that salinization had had a medium to high 396 

impact on agricultural production in the area in recent years, especially during the 2023 saline intrusion. Meanwhile, 397 

38% of households stated that saline intrusion has little or very little impact on agricultural production, mainly 398 

households in areas far from the coast and so less affected. Households in the study area have taken many measures 399 

to mitigate the increasingly serious saline intrusion, such as washing the salt after each crop (as instructed by local 400 

authorities) and changing the crop structure. 66% of interviewed households said they had to change the crop 401 

structure to suit the saline intrusion or switch to non-agricultural occupations to earn more income. Of the 87 402 

households interviewed, 28% had their main income from non-agricultural activities. A large number of people 403 

switching to non-agricultural activities can meet their livelihood needs, but in the long-term, farmers abandoning 404 
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agricultural activities to seek jobs in factories or migrate to cities also poses many negative environmental and social 405 

consequences, such as the decline of agrobiodiversity or labor shortages in agriculture, etc. (Subedi et al., 2022).  406 

4.4.2. Human Resources 407 

In agricultural production and the adaptability of the community to salinity intrusion, demographics are considered 408 

one of the most important factors contributing to the creation of labour resources, directly affecting crop 409 

productivity. The results of interviews with 87 households showed that each household has an average of 3.5 410 

members, comprising 2.5 workers and 1 dependent member. Using available family resources reduces labor costs, 411 

thereby increasing production profits. However, the quality of human resources poses a concern when adapting to 412 

saline intrusion. One of the criteria for evaluation is education level. Most workers in households had a junior high 413 

school degree (66%), 5% of interviewees had a high school degree, and less than 3% had a university degree. 414 

According to previous studies, education is an important factor in determining workers' income. In the context of 415 

climate change and sea level rise, agriculture is negatively affected by these phenomena: low levels of education 416 

mean a lesser ability to absorb new knowledge and methods in organizing production to reduce the negative impacts 417 

of saline intrusion. Although 83% of the interviewed households had more than 20 years of experience in 418 

agricultural production, their knowledge of saline intrusion and climate change was still limited. Specifically, people 419 

lack the adequate knowledge and skills to adapt to changes in environmental conditions, leading to difficulties in 420 

choosing appropriate livelihood models. 421 

Furthermore, saline intrusion has led to several health insecurity. Coastal residents in saline areas are at risk of 422 

consuming high salt above the recommended levels. It is evaluated that over 7 million coastal populations in 423 

Bangladesh, India, and Vietnam suffer from hypertension and cardiovascular diseases as a result of long-term 424 

ingestion of saline groundwater (Hoque et al., 2016). This has profound consequences for the development and 425 

quality of human resources in these areas. 426 

4.4.3. Physical Resources 427 

Material resources include essential items that serve people's daily life and livelihoods. The majority of the 428 

households interviewed were engaged in agriculture, so the means of production were mainly related to agricultural 429 

activities. Of the 87 households interviewed, 90% were equipped with agricultural production equipment such as 430 
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pumps, sprayers, and tractors, while 100% had access to tractors and harvesters for farming. The interviewed 431 

households used equipment to exploit water sources for agricultural production; however, because the town of An 432 

Tan is located in a coastal area, groundwater and surface water are often affected by saline intrusion. Thus, they still 433 

faced challenges related to water resources, especially in the context of saline intrusion  434 

Moreover, in response to saline intrusion, accessing freshwater for daily use and irrigation often leads to the 435 

spontaneous extraction of groundwater through tubewells, a common practice in coastal areas of Vietnam and 436 

Southeast Asia (Hoque et al., 2016). However, excessive groundwater extraction and improper irrigation practices 437 

also pose many potential risks of increasing water resource depletion and accelerating salinization processes (Tarolli 438 

et al., 2024). This will likely undermine the long-term adaptive capacity of coastal communities. 439 

4.4.4. Financial Resources 440 

The interviews with 87 households demonstrated that 9% of the households interviewed were poor and near-poor. It 441 

can be seen that economic status greatly affects people's ability to adapt and recover from soil salinity. Poor and 442 

near-poor households frequently have more difficulty evaluating solutions to mitigate the impact of soil salinity on 443 

agricultural production. The primary source of income for a large part of the population mainly comes from 444 

agricultural activities: 72% of the households interviewed confirmed that their main livelihood was agriculture. 445 

However, their agricultural income is frequently unstable. This stresses the vulnerability of people's livelihoods due 446 

to the strong effects of soil salinity on agricultural activities. Meanwhile, 56% had a stable source of income from 447 

factory work. This emphasizes the need to diversify income sources for inhabitants in soil salinity areas. In addition, 448 

although the income from agricultural production was enough to cover farmers’ daily life, most of the households 449 

interviewed could not save. Therefore, with increasing saline intrusion in the context of climate change, it is very 450 

difficult for these households to have an effective response or adaptation solutions. Borrowing capital to overcome 451 

the negative impacts of saline intrusion is one of the adaptation strategies reported by the interviewed households. 452 

36% of households borrowed capital from relatives, 11% borrowed from credit funds or banks, 14% from local 453 

organisations, and 33% from distribution agents. Meanwhile, 8% of the interviewed households could not borrow 454 

any capital to overcome the consequences of saline intrusion.  455 

Diversifying external sources of capital can help households overcome the consequences of saline intrusion and 456 

support agricultural production more generally. However, there are still several people who cannot access capital 457 
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sources, and training to the adaptability and resilience of the people. This increases the impact of soil salinity on the 458 

community in the study area. Furthermore, a capital utilization strategy must be carefully considered to ensure 459 

efficient use of resources to improve livelihoods and enhance adaptability to saline intrusion. 460 

4.4.5. Social Resources 461 

Social resources play a key role in mitigating the impacts of soil salinity on the adaptability and resilience of the 462 

people. In the study area, households received support from various sources, such as local communities, volunteer 463 

organizations, non-governmental organizations, and mutual assistance among households. This support includes 464 

exemption from land use tax, support for production equipment, crops, and food supply for people. Regarding 465 

people's awareness of climate change and its impact on salinity intrusion, about 82% of households said they learned 466 

about this issue through local authorities and media propaganda.. Furthermore, 100% of the households surveyed 467 

reported that local authorities also had organised training sessions and drills to respond to saline intrusion and sea 468 

level rise. However, as mentioned above, the knowledge and skills of inhabitants are still limited. This raises 469 

questions about the effectiveness of training sessions. In addition, these training activities occur infrequently. For 470 

example, during the 2soil salinity, people did not receive timely support and assistance from these organisations. 471 

This led to a reduction in the community's ability to adapt tsoil salinity. 472 

5. Discussion 473 

Soil salinity is a global environmental threat, a key cause of food insecurity worldwide (Song et al., 2024). 474 

Therefore, it is essential to monitor it with high precision, as is identifying the adaptive capacity of those in 475 

vulnerable regions. 476 

In Vietnam, two large deltas ensure food security not only, but also in other countries. Although several previous 477 

studies have been conducted to assess soil salinity in Vietnam, most have focused on assessing soil salinity and 478 

farmers’ adaptive capacity in the Mekong Delta (Nguyen et al., 2024; Hoang and Hai, 2024). Few studies have been 479 

conducted in the Red River Delta. The Red River Delta is one of the key agricultural regions in Southeast Asia. 480 

Therefore, assessing soil salinity and farms’ adaptive capacity in this area is necessary. In this study, remote sensing, 481 

machine learning, and community interviews were used to evaluate soil salinity and the adaptive capacity of farms 482 

in the delta. 483 
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Remote sensing plays a key role in analyzing soil salinity because the salt in the soil has a significant effect on the 484 

spectral reflectance of the soil. Soils with different salinity levels will have different spectral characteristics; for 485 

example, areas covered with white salt often have higher spectral reflectance levels and salinity (Hoa et al., 2019; 486 

Wu et al., 2018; Xiao et al., 2023). This is the basis for using remote sensors to monitor saltwater intrusion. 487 

However, one of the challenges in using Sentinel 2 satellite images in soil salinity monitoring is that sometimes, the 488 

spectral reflectance level is not consistent with soil salinity. Many studies have integrated vegetation indices in soil 489 

salinity monitoring to minimize this limitation because different areas will have different soil salinity. It should also 490 

be noted that the difference depends on the vegetation type in each area. Therefore, this study has integrated Sentinel 491 

1 images in soil salinity monitoring. Sentinel 1 images use radar signals to monitor moisture and dielectric 492 

properties providing accurate information on soil salinity. This is particularly important in coastal areas, where 493 

surface moisture is high, reducing the accuracy of optical imagery. This approach identifies areas severely affected 494 

by salinity intrusion while supporting the assessment of the adaptive capacity of communities in the area (Hoa et al., 495 

2019). However, with the increase in the volume, type, and speed of remote sensing data collection, bottlenecks in 496 

the data analysis process may occur (due to the inadequacy of the structure of current models for processing large 497 

datasets). 498 

XGB is one of the most powerful algorithms for identifying the spatial distribution of natural hazards, such as 499 

floods, landslides, and soil salinity. Its advantages include the ability to avoid the overfitting problem and fast 500 

convergence. Additionally, XGB effectively handles missing values (Mo et al., 2019; Liu et al., 2022). However, 501 

both the configuration and interpretation of XGB are more complex, and the parameters of this model are also 502 

complex to tune. Incorrect parameter selection can reduce performance (Ramraj et al., 2016). Therefore, it is 503 

necessary to use optimization algorithms to select the parameters of this model. In this study, five optimization 504 

algorithms, namely POA, STO, SOA, PSO, and GOA, were utilized to optimize the parameters of XGB. The XGB-505 

POA model outperformed the other models as it is easy to carry out, has few parameters to adjust, has faster 506 

convergence capability, and can avoid local minima - which enables it to find the best global solution (Premkumar 507 

and Santhosh, 2024). Previous studies have indicated that POA also can solve complex problems with a large 508 

number of variables and non-linear properties (Li et al., 2023; Alamir et al., 2023). 509 
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XGB-STO model ranked second. The STO algorithm maintains a good equilibrium with exploration and 510 

exploitation processes. This allows it to avoid local minima problems, which improves model performance 511 

(Trojovský et al., 2022; Al-Sarray et al., 2024). The XGB-SOA model came third in terms of accuracy. SOA can 512 

solve complex problems with a large number of variables or continuous, discrete, or multi-objective problems, so it 513 

is a versatile tool for several different applications. In addition, inspired by the serval's precise jumps and fast 514 

movements, SOA can converge quickly with high accuracy (Dehghani and Trojovský, 2022; Sindi et al., 2024).  515 

The XGB-PSO model was ranked fourth. In addition to ease of use, PSO has the advantage of equilibrium of the 516 

exploration and exploitation processes. This can avoid the local optimization problem (Rini et al., 2011; Juneja and 517 

Nagar, 2016). The XGB-GOA model was less accurate than other models because it tends to concentrate exploration 518 

at the beginning of the process to avoid the local optimization problem. This may lead to slow convergence 519 

(Mirjalili et al., 2018; Zhao et al., 2019). 520 

When comparing the models proposed in this study on the ability to predict natural hazards such as soil salinity, 521 

each model has different characteristics that influence the real-time prediction ability. Three models (XGB-POA, 522 

XGB-STO, and XGB-SOA) can converge quickly because of the faster learning speed. Therefore, these models best 523 

suit adaptation for real-time applications because fast updates are necessary to support those tasked with developing 524 

mitigation strategies.  525 

The results of this study explored the adaptive capacity of farms in the Thai Thuy district of Thai Binh province. 526 

Riverine farmers in areas affected by saltwater intrusion are prepared. They rely on their local communities and 527 

expect support from local authorities and voluntary organisations. Our results are similar to those of previous studies 528 

investigating the adaptive capacity of residential communities to natural hazards, including saltwater intrusion. The 529 

key to adaptation is education, knowledge, and resources to cope with saltwater intrusion. These resources can be 530 

natural, physical, financial, social, and human resources.  531 

The community's adaptive capacity in the study area faces many challenges, especially in the context of global 532 

warming and growing saltwater intrusion. Although most households surveyed have more than 20 years of 533 

experience in agricultural production and benefit from available labor resources, their adaptive capacity to saltwater 534 

intrusion remains limited. This is in part because these households lack the knowledge to change their livelihood 535 

patterns in addressing varying environmental situations. In addition, the main sources of agricultural income are 536 
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often unstable, and the ability to accumulate finances is low, leading to difficulties in adapting to and recovering 537 

from saltwater intrusion. People's adaptation strategies, such as uncontrolled groundwater extraction and conversion 538 

to non-agricultural activities, also present long-term environmental and social risks. Furthermore, policies and 539 

support programs for residents, such as training sessions and lending programs provided by stakeholders, also raise 540 

concerns regarding their effectiveness and inclusiveness. Although people in the study area have access to capital 541 

from many different sources, some households still cannot access these sources of capital to overcome the 542 

consequences of saltwater intrusion. All of these factors impact agriculture and human life, leading to increased 543 

household vulnerability. To enhance people’s adaptive capacity, it is important to emphasize the role and 544 

effectiveness of policies of local governments, policymakers and stakeholders in supporting people to understand 545 

better and respond to saline intrusion. Information and knowledge sharing can be done through direct outreach to 546 

people to raise awareness of saline intrusion among communities. Lending policies of local governments and 547 

stakeholders need to cover all households while improving the efficiency of capital use. Effective management of 548 

natural and physical resources and enhancing social capital through the development of cooperative community 549 

models are important factors contributing to people’s adaptive capacity to saline intrusion. This study has 550 

successfully built a theoretical framework using machine learning with optimization algorithms, remote sensing, and 551 

farmer interviews to determine the spatial distribution of soil salinity and farmers' adaptation capacity. However, to 552 

apply this theoretical framework in different regions, it is necessary to use factors specifically pertinent to each 553 

region. Machine learning models must be provided with the local characteristics of the region in question. However, 554 

data collection in any region is difficult, often due to restrictive data-sharing policies or limited financing resources 555 

to maintain and distribute the data. 556 

A significant problem when using machine learning is that of extrapolation. Each model built is adapted only to one 557 

set of data. Therefore, evaluating the soil salinity in other regions is challenging. Machine learning models require 558 

stationarity due to the abrupt and non-stationary nature of the system. To solve this problem, several studies have 559 

pointed out that integrating machine learning with conventional models for example, remote sensing or 560 

hydrodynamic models can be effective, as such traditional models can provide the training data to use as the input 561 

file of the machine learning model. Another solution is to combine machine learning with optimization algorithms, 562 

as in this study, to enhance the prediction capability of the machine learning model (Tran and Kim, 2022).  563 
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This study was successful in building machine learning models integrated with optimization algorithms to identify 564 

the spatial of soil salinity, as well as evaluating farmers’ adaptive capacity in the study area. However, in terms of 565 

data, this study collected 62 soil salinity samples to build the machine learning model; therefore, the soil salinity 566 

map constructed by the proposed models cannot present the trend and drive of soil salinity in time series. 567 

Furthermore, soil salinity is significantly affected by climate change and rising sea levels, so it is necessary to assess 568 

the effects of this change on soil salinity in the future. 569 

As hydrological conditions change, those living in deltas are confronting increased risk. The Red River Delta is one 570 

of the largest deltas in the world and, thanks to its fertile floodplains, is home to about 21 million inhabitants. In 571 

recent years, in the context of global warming and rising sea levels, these deltas are confronting growing flooding 572 

and soil salinity problems, which affect food security in the region and the country. Policies must be implemented to 573 

improve the agricultural system and the adaptive capacity of farmers. A proactive approach is required, envisaging 574 

multiple scenarios to provide appropriate support for agriculture. These scenarios may include activities and 575 

programs adaptive to the different influences of global warming on soil salinity. 576 

6. Conclusion 577 

Soil salinity is a key environmental threat, which will have a growing effect on the development of agriculture and 578 

food security globally. A lack of assessment of local adaptive capacities exacerbates the problem. Therefore, this 579 

research's objective was toconstruct a theoretical framework to assess soil salinity and farmers’ adaptive capacity 580 

based on machine learning, optimization algorithms, remote sensing, and interviews with local people. The results in 581 

this study represent a novel contribution to the literature for researchers worldwide and can support policy-makers 582 

and farmers to establish suitable strategies to limit damage related to soil salinity. The outcome of this research is as 583 

follows. 584 

-  This study justified the effectiveness of machine learning and remote sensing in soil salinity monitoring in the Red 585 

River Delta. The results of this study can be opened to realize in different regions. 586 

- Five optimization algorithms, namely POA, STO, SOA, PSO, and GOA, were successful in optimizing the 587 

accuracy of the XGB model. All these algorithms were successful in improving the accuracy of XGB. Of these, the 588 
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XGB-POA model showed the greatest performance, with an R² value of 0.968. This was followed by XGB-STO 589 

(R²=0.967), XGB-SOA (R²=0.966), XGB-PSO (R²=0.964), and XGB-GOA (R²=0.964). 590 

- The models in this research were utilized to construct soil salinity maps. The maps demonstrated that littoral areas 591 

and those along the rivers were the most influenced by the soil salinity problem because these regions are influenced 592 

by seawater. In addition, when the river levels are lower during the dry season, it creates the conditions for seawater 593 

to penetrate the land.  594 

- Five factors were analyzed to consider farmers’ adaptive capacity: natural capital,  human capital, material 595 

resources, financial resources, and social capital. The results show that people have awareness and actions in 596 

improving their adaptive capacity to increasingly severe saline intrusion; however, there are still many limitations 597 

related to lack of awareness and finance. As a recommendation, the participation of multiple stakeholders is 598 

required, with a particular emphasis on the role of policies in sustainably and effectively enhancing people's 599 

adaptive capacity.   600 

The outcome of this research provides key knowledge on the spatial distribution of soil salinity and farmers’ 601 

adaptive capacity to growing salinization, to support local authorities or farmers in proposing appropriate measures 602 

to reduce soil salinity damage. This can complement a theoretical framework in the existing literature on soil salinity 603 

management and adaptive capacity. 604 
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